Sign Language Classification Using Webcam Images

Ruslan Kurdyumov, Phillip Ho, Justin Ng

December 16, 2011

Abstract

Immediate feedback on sign language gestures can greatly improve sign language education. We seek to classify the
English sign language alphabet using webcam images. We normalize and scale the images to 20 x 20px, and use the
binary pixels as features. We can successfully classify up to 92 — 93% of the signs using a linear or Gaussian kernel
SVM, outperforming k-nearest neighbor classification by about 10%. Using a custom set of features we developed, we

can successfully classify 81 — 82% of the signs with an SVM.

1 Introduction

Implementing techniques in machine learning and image pro-
cessing, we hope to obtain a high level of accuracy in dis-
tinguishing between the letters in the English sign language
alphabet. Our system receives input from webcam images and
classifies them based on features defined by post-processing
the images.

The primary application for sign language recognition is
to improve sign language education. A person who wants to
learn and practice sign language today does so by hiring a
sign language instructor or watching instructional videos on-
line while practicing in front of a mirror. The former method
can be expensive and inconvenient for people with busy sched-
ules and the latter does not provide the user with necessary
feedback on correctness.

Our recognition system can be implemented into a desktop
or browser application that can provide immediate feedback
to a user’s hand gesture. Such a tool would be inexpensive
and convenient, requiring the user to practice in front of their
webcam rather than attending expensive sessions with an in-
structor. Unlike the mirror, the system can also provide in-
stant feedback on the correctness of the hand gesture.

The alphabet we’re classifying introduces several interest-
ing challenges. First, many letters (e.g. a, m, n, s, and t) are
represented as very subtle nuances of a clenched fist. Since we
use the silhouette of the hand shape to classift, these letters
are likely to be commonly misclassified. Second, the letter j
and z are signaled by motion in the hand, which cannot be
represented in a single image. The starting pose of the letter
j is identical to the letter i, so we removed this letter from our
data set. The letter z, which starts in a distinct pose with the
pointer finger, is represented by its starting pose.

Our choice of using webcam images as our input for-
mat also creates some difficulty in correctly classifying hand
shapes. Depending on the quality of the webcam, captured
image data typically contains noise from compression. Since
we cannot constrain where the user’s hand will be in relation
to the camera, our recognition system needs to be invariant
to scale and position. Rotational invariance is less important
because the user’s arm will typically be pointing vertically

upward to make hand gestures, but this is a feature we hope
to include in the future. We tackle these challenges in post-
processing, explained in a later section, of the image captures.

Current solutions incorporate a variety of machine learn-
ing techniques to classify hands. Using a Pyramid of His-
togram of Oriented Gradients as a feature for a SVM with
70-30 cross validation, Knight is able to distinguish between
a hand and non-hand [1]. Shariff applies a combination of (2d)
shape-based and size-based features to recognize the config-
uration of the hand in the scene [2]. Tracking data gathered
over time with a 3d-camera, Marx devises a SVM-based sys-
tem to classify between one finger, two fingers, a closed fist,
and open palm gestures [3]. Hidden Markov models, com-
monly used in handwriting recognition, achieve a 97%+ ac-
curacy in classifying 40 words in American Sign Language
[4].

2 Data Collection

1
’
.
[
.
¥
r
‘s
[
'
¢
*
[3
’
L
rl
']
L4
.
]
¥
¥
¥
v

LA NN E IR AN S AN TN Y Y
Yasuoguerass toeri Ensmay
€ Eney s) A s aLer YU ENSBRY
Eoacassnyhny s thyYh Kropms
CrmrrssarigsntoerY Y Emnanwe
CToemaass) Aeen torEons e
Contes s risrtarYyEsnnoms
Towansy y o) Rosn by Qe nnes
Famarys L) Ao s LaT g Enan e
CenneysasAnss oy iEuasns
dosannyu)lesestor e soey
CTremsas s insstunc Y Gnnoanny
Toamcaas a2 Resy Ehy) coas e
Tomnety) ANt LAt mnneea
Fommatg o) Ausoy Lo cnanme
Chacange B Wes Leu Rl @ yon e
Tomacn s tIARSsstanyryYEsannn
fenaryta)iusatng Y ES P
Tomeaaspay Aot o TRnuY R Enn® e
Comcentnu) Aoy s tosryRweenes
Trxnasrud)esesrnrYaEnnens
Ceenes s ANt tar-YREasmny
Tracntsndrass by REsaney
Cocthonssn) Anes tnrYyYresars

Figure 1: A sampled set of image processed training data.

Our dataset comprises over 1800 webcam images of hand
gestures (see Figure 1). The images were taken from a stan-
dard laptop webcam at 640 x 480px resolution. Using a cus-
tom MATLAB script to expedite the process, each team mem-
ber took 20-30 images of his right hand signing each of the 25
letters (skipping the letter 7j”). While capturing images, the
hand gestures were moved or rotated slightly to avoid taking

sets of images that were too similar. By introducing some
variance into the dataset, we help ensure that any new data
we test on does not need to look exactly like the training data
in order to be correctly classified.

A single image of the background without a hand in the
foreground is also taken for both the training and test data.
This background plate allows our system to extract the fore-
ground from the images much more easily by performing back-
ground subtraction, which we describe later.

3 Image Processing

We apply image processing to better extract features from our
input images. In particular, the features that we extract from
our images should be invariant to background data, transla-
tion, scale, and lighting condition.

[2) (b)

Figure 2: Image processing timeline. We start with a raw image
(a), subtract the background (b), binarize (c), remove small white

and black holes (d), remove white patches and crop the hand (e),
cut out the wrist (f), normalize the hand size (g).

First, images are converted to grayscale. While this makes
other operations much more simple and quicker to compute,
we lose color information from the original images. Since our
system needs to be lighting invariant, the color information
should actually be ignored because we cannot rely on the col-
oration of the hand to be consistent between test and training
image data.

Since the background data is not relevant and should not
be trained nor tested against, we first remove the background
from the foreground. By subtracting the background image
from an input image, we find the intensity change of each
pixel. Intensity changes above some threshold are classified
as foreground pixels and the remaining pixels are background
pixels. The threshold was set to ensure that hand pixels would
not be subtracted out.

The next step is to get the silhouette of the hand. The
image is binarized by setting all non-black pixels to white (1)
and leaving the remaining pixels as black (0). We remove
holes and remove all but the largest connected components
to get a single, solid silhouette of the hand.

We normalize the translation and scale by relying on some
assumptions about the wrist. First, we locate the wrist by
starting from the bottom-most row, assuming the hand pro-
trudes from the bottom edge of the image, and checking the
width of the arm in each row until the width reaches its min-
imum, which is assumed to be the wrist location. The hand
is repositioned such that the wrist is centered at the bottom
of the image and padded by a factor dependent on the wrist
width to fit into a square. The final image is resized into a 20
x 20px image, forming a 400-member feature vector. The full
effect of processing can be seen in Figure 2.

4 Approach

Our overall approach to the classification problem is summa-
rized in Figure 3.

Image Processing

Image Processing
Feature Extraction

Feature Extraction

Cross Validation

Test using SVM

Classification

1
Train using SVM ' e
] Prediction

Figure 3: The classification process.

After obtaining our full data set, we shuffle the data and
split into 85%/15% train/test, which still leaves us with over
250 test examples. Since it’s not obvious which image size will
provide the most distinguishing features, we varied the resized
image dimension and examined the 10-nearest neighbor test
error. We find that a 20 x 20px image is optimal, and these
results are summarized in the Cross Validation subsection.

Once we have an optimal image size, we run 10-fold cross-
validation on the train examples to determine optimal SVM
parameters C and « (for the Gaussian kernel). Given an op-
timal set of parameters, we then train on the full training set,
forming a training model, and test on the test set.

5 Results

5.1 Pixel features
5.1.1 Image Scaling

To determine the optimal image dimensions to use for classifi-
clation, we ran k-nearest neighbor (with & = 10) classification
on our full test set with pixel dimensions = [10 20 30 40 50].
We chose to use k-nearest neighbor classification rather than
SVM since using an SVM would require tuning model param-
eters for each pixel dimension, significantly complicating the
cross validation. The results can be seen in Figure 4.

Test error vs. image dimension using 10-nearest neighbor classification
30 T T T T T

25+ —

15+ —

Test error (%)

10+ —

0 L L L L L
0 10 20 30 40 50 60

Image width & height (pixels)

Figure 4: Image resize dimension test error using 10-nearest
neighbor classification.

We find that 10 pixels is not enough to robustly classify
among the signs, as expected. When scaling the image down
that severely, many distinguishing features are lost. 20 and
30 pixel image dimensions have improved performance (error
around 16%, and the 50 pixel image dimension has the best
performance. We chose to use 20 x 20 pixel images because
enough distinguishing features should remain and we can filter
out some noise by scaling down to that size. In addition, with
a training set of around 1500 images, we could ensure that our
number of features (400) was still significantly smaller than
the training set size.

5.1.2 Cross Validation

After creating the feature vectors for all of our test and train
examples, we ran 10-fold cross validation to determine the op-
timal soft margin parameter C and the Gaussian parameter
v (for the Gaussian kernel). We used a log2 space search (in
either 1 or 2 dimensions) and picked the parameter (or pa-
rameter pair) with the highest cross validation accuracy. In
general, we first run a coarse search, and if necessary, a fine
search. For example, the search for optimal C, v parameters
is shown in Figure 5.

Gaussian kernel cross validation log search

93

92.8

92.6

92.4

Accuracy (%)

92.2

92

91.8

91.6
1.045

gamma g c

Figure 5: The cross-validation accuracy for a range of Gaussian
kernel SVM parameters.

5.1.3 Classification Results

The summary of the classification results can be seen in Ta-
ble 1.

Table 1: Pixel Feature Classification Results

C.V. accuracy Test accuracy

Classifier 12 25 12 25
signs signs signs signs

Linear 97.2% 90.8% 98.6% 92.4%

kernel

Gaussian 98.3% 92.4% 98.6% 93.5%

kernel

k- N/A N/A 93.0% 84.8%

nearest-

neighbor

The Gaussian kernel slightly outperforms the linear kernel
SVM when testing the full 25 sign set, but they are both 98.6%
accurate on the condensed 12 sign set. They both outperform
the baseline k-nearest neighbor classifier (with k¥ = 10). Our
test error is actually slightly lower than the cross validation
error, which seems somewhat anomalous. The likely expla-
nation is that when we randomly shuffled our data and split
into training and test sets, the training set happened to get a
disproportionate amount of poor examples.

5.1.4 Learning curve

To get an idea of how well our algorithm was learning, we
plotted the learning curve, seen in Figure 6.

Training and test error vs. training set size (linear SVM)

35 T T T T T
—=©6— Training error|
—— Test error

30 q

251 1

201 il

Error (%)

0 NI = I f I 1 I
0 200 400 600 800 1000 1200 1400 1600
Number of training samples

Figure 6: Learning curve. The test error appears to be asymp-
totically decreasing, suggesting a high variance situation.

The plot shows an asymptotic decrease in the test error,
coupled with a slow increase in the training error as the train-
ing set size increases. It appears that we have a high variance
situation - lots of features and not enough training examples.
Since our train error is fairly low, high bias is not a problem.

5.2 Custom features

To compare the performance of our pixel-based feature vec-
tor, we also created a 13-feature vector from the images. To
collect the features, we used the normalized (but not resized)
image, as in Figure 2 (g), except with the hand pixels in
grayscale. Three features we collected were the relative area,
height and width of the normalized hand. We also deter-
mined the width of the top of the hand and the gap in the
top the hand. These two features could be useful in telling
us how many fingers that the user was holding up. We also
obtained features by running Fourier transforms on various
rows in the image and saving the magnitude at an optimal
frequency. Running the Fourier transforms provides a rough
alternative to edge detection. The edges are primarily caused

References

[1] Knight, D., Tang, M., Dahlkamp, H., and Plagemann, C.

Project Paper, 2010.

by the fingers, so the position of the fingers in the hand gives
a unique spectral signature which can be used to recognize
the sign.

The classification results using our custom features can be
seen in Table 2.

Table 2: Custom Feature Classification Results

C.V. accuracy Test accuracy

Classifier 12 25 12 25
signs signs signs signs

Linear 94.8% 788% 99.2% 82.3%

kernel

Gaussian 95.8% 85.7% 87.1% 81.2%

kernel

k- N/A N/A 92.7% 78.0%

nearest-

neighbor

With our custom features, the Gaussian kernel is actu-
ally less effective than the linear kernel, suggesting that some
overfitting is taking place in the higher dimensional feature
space. We have a higher test accuracy than C.V. accuracy for
the linear kernel, but not for the Gaussian kernel, which is
difficult to explain. The linear kernel SVM outperforms the
10-nearest neighbor classifer for both sign sets.

6 Further Work

There are several key extensions of our work. While our
method works well on webcam images, ideally, we would like
to classify live webcam video of sign language. This would re-
quire a different image processing scheme to isolate the hand
in the image. In particular, our background subtraction algo-
rithm would have to be modified, since the background would
be dynamic. An alternate approach would be to use scale in-
variant features derived from webcam stream images, derived
from an algorithm such as SIFT [5], which would be less sen-
sitive to background noise and rotations of the hand.

7 A Framework for Recognizing Hand Gestures”, CS229 Final

[2] Shariff, S. and Kulkarni, A. ”Identifying Hand Configurations with Low Resolution Depth Sensor Data”, CS229 Final

Project Paper, 2009.

[3] Marx, M., Fenton, M., and Hills, G. ”Recognizing Hand Gestures with a 3D Camera”, CS229 Final Project Paper.

[4] Starner, T. and Pentland, A. "Real-Time American Sign Language Recognition Using Desk and Wearable Computer
Based Video”, IEEFE Transactions on Pattern Analysis and Machine Intelligence Vol. 20, No. 12, December 1998

[5] Lowe, D.G. ”Object recognition from local scale-invariant features”, The Proceedings of the Seventh IEEE International

Conference on Computer Vision, 1999 Vol. 2

